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TRANSIENT HEATING OF THIN PLATES
ABSTRACT

Two classes of heating problems involving the heating of thin plates
over a portion of their surface are considered. Such problems have
mumerous applications, one such application being the determination of
the temperature rise in materials upon which a laser beam is directed.
The heating effects caused by a laser beam fits into the class of
problems for which the heating source has circular symmetry. The second
class of problems arises when the source term has symmetry about a line
on the surface. Solutions in the form of a definite integral are
obtained for both classes of problems for a general time independent
source of unspecified spatial distribution. Several solutions in closed
form are obtained for particular source functions and for particular
values of the various parameters of the problem. For the case of a disk
source an error bound useful in the numerical quadrature of the integral

solution is obtained.
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LIST OF SYMBOLS

c specific heat

erf (x) error function

erfc(x) complementary error function

El(x) exponential integral function

h heat transfer coefficient

In(x) modified Bessel function of the first kind
Jn(x) Bessel function

Kn(x) modified Bessel function of the third kind

k thermal conductivity

q(r) dimensionless circular symmetric source function, See Eq. (9)
q(x) dimensionless line symmetrical source function

ic(a) Fourier cosine transform of q(x)

aH(d) zero order Hankel transform of q(r)

Q(R,B) source function

Qo flux intensity at center of heat source, Q(o,f)
£ dimensionless radial coordinate, R/B

R radial coordinate

t dimensionless time, See Eq. (5)

T dimensionless temperature, See Bq. (7)

Gc(c) Fourier cosine tramsform of u(x), See Eq. (70)

GH(G) zero order Hankel transform of v(r), See Eq. (16)

X cartesian coordinate

o' thermal diffusivity

B parameter in source function

I(x) gamma function

o} plate thickness

€ dimensionless heat transfer coefficient, See Eq.(8)
6 temperature

6 initial temperature, temperature of cooling medium
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LIST OF SYMBOLS (cont'd)

density
integral transform variable

time



1. INTRODUCTION

Several types of conduction heat transfer applications involve the
determination of transient temperature in a thin plate heated over a
portion of its surface, the surface being simultaneously cooled through
surface convection. Typical applications include the heating of thin
metal plates with a laser or incendiary, drilling holes in metal,
acetylene burning, arc welding and friction heating of machine parts.
Solutions for uniform disk and uniform strip sources were obtained by
Thomaslf the solutions being in the form of definite integrals for the
most general cases. For special cases such as no cooling, steady state,
or at the center of the heated area, Thomas reduced the general integral
solutions to the form of functions for which tables exist. In this
report the results cited above are generalized to include solutions for
all time independent source functions meeting certain fairly general
criteria. Additionally several new results in closed form are obtained.
For the case of a disk source the general integral solution is in the
form of a definite integral on the interval (0,x). For this case an
error bound is obtained which yields an upper bound on the error in-
curred when this integral is approximated by numerical quadrature over

finite limits.

II. CIRCULAR SYMMETRIC SOURCES

We assume the thin plate of thickness ® has constant thermal
properties, the cooling effect can be represented by Newton's Law of
Cooling and the temperature gradient across the thickness of the thin
plate is negligible. We also assume that the initial temperature and
the temperature of the cooling medium is constant at A = 90. Under
these conditions and for a circular symmetric source, Fig. 1, the
applicable partial differential equation, initial condition and

boundary conditions are the following:

pe k2 . Rg-g)+ 2B g5, 750

6=6 R20,7=0 (2

References are listed on page 24.
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CIRCULAR SYMMETRIC SOURCE

CIRCULAR SYMMETRIC
SOURCE Q (R, 8)

Fig. 1
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a—9= - O
8=x=0 R~ 720 (3)

A <o R=0, 1 20. (4)
In the usual fashion it is desirable to work with dimensionless

variables. If we let

t = orB 2, (5)
r =R, (6)
-2 -1

T=k5(A - 6)B "Q,, (7)

= 2h32k'15'1, (8)

a(r) = Q(Br,BQ] ", ®)

where

Q = Q00,8 , (10)

a=kp et (1)

then the problem can be expressed in the following dimensionless form:
at _Fr 13t 2

-3ty €T+a®,r>0,c>0 (12)
T = 0, r'z O, t=20 (13)

T = %% =0, r-® t>0 (l4)

T <o r=0, t 20. (15)

The technique employed to obtain a solution to (12) - (15) is the
integral transform method. The zero order Hankel transform of any

arbitrary function v(r) is defined by

Gﬂ(o) = j rv(r)J_(or)dr, (16)
(o]

where its inverse transform is given by

(-]

v(r) = J GGH(U)Jo(ar)do. (17)
(o)

By taking the zero order Hankel transform of (12), we obtain the

subsidiary equation

11



dTH(a,t)
dt

= -(c:2 + cz)fH(a,t) + iH(U)- (18)

This result arises from the identity (see Carslaw and Jaegerz)

co-la— o } -ZJ'Q
I;r ar(r-g;')rJo(Or)dr o oero(ar)dr, (19)
which holds if v(0) is finite and
v(r) = é%ézl -0 asr - o (20)

From (13) and (16) we have
T, (0,0) = 0. (21)
The solution of (18) subject to (21) is
- - 2 2, -1 2 2
T, (0,t) = q,(0) (0" + €7) "[1- exp[-t(c” + €)]]. (22)
From (22) and (17) we have
"~ 2 2.-1 2, 2
1,0 = [ 3,0 @ + ¢ oI (or) [L-expl-t @*+€?) . (23)
)
This solution is valid for all circular symmetric sources for which a
Hankel transform iH(a) is defined. For the most general cases the above

integral cannot be reduced further and one must resort to numerical

quadrature for obtaining numerical values.

A. Gaussian Circular Source

A Gaussian circular source is defined by

2 -2
-R
Q®.H =qe ™ P, (24)
which in dimensionless form reduces to
2
-r
q(r) = e . (25)

We consider the case for no cooling, € = 0. For this case ﬁH(c) is

*
given by (10), p.29, Brdelyi , et. a13, Vol.2

Hereafter the two volumes of this reference will be referred to as
(EMOT1] and [EMOT2].
12



q,(0) = eV (26)

The general solution (23) reduces to
G 2 2 i
T(r,t) = % J g lJo(ar)[e AR (t+‘)]do. 27)
0

To evaluate this integral we make use of the identity

) 2 Col 2 -1
[67'e™% 5 (or)do = s(n/ayt [ Ié[oz(Sa)-l]da, (28)

o r
which is derived by combining (7) p.5 and (8) p.29 of [EMOT2]. We also
have the identity

Ié(z) = (21rz)-%(ez - e %, (29)
Hence
o 2 ] 2 -1
J o-le'ao Jo(ar)da = I (1 -e -’a )do. (30)
0o r

By letting y = %aza-l, we obtain the following identity:

0 2 -1 ©
_[ g le'i" 2 do =% I 5 _le'yy'ldy (31)
#-%a

r
-8 (% Th.
From (27), (30) and (31) we obtain the final result
T(r,t) = {8, [FGer) 1] - B (D). (32)

We note that this solution is unbounded for r = 0; thus,we treat this

case seperately. For r = 0 in (27), we obtain

TO,t) = limo *[ I 2

li y. -1
Srt "_[ 2 Yy ay. (33)
/(4t:+1)

Since the integral is to be evaluated near the origin, we can let

y, -1 ¥ ey -1
y dy-fzeyy dy]
/(4t+1) r

eV al-y4+0G) (34)

13



obtaining
2

r
1i -1
T(0,t) = ¢ _mo 2 [ -yy "+ 0(y) ldy (35)
r°/ (4t+l)
= 3ingee + 1) + " Mo 2)[”§ ]
ain r - 0L" Y 714/ (be+l)
= :ln(4t + 1).
Hence, the solution for a Gaussian circular source and no cooling is
given by
&{zl[rz(am)'l] - El(rz)}, r>0

T(r,t) = (36)
aln(4t + 1), r = 0.

B. Uniform Disk Source

A uniform disk source is defined by

QR <8
Q(R,H8) = (37)
0, R>8,
which in dimensionless form reduces to
l, r <l
q(r) = 0 it >0l (38)
The zero order Hankel transform of (38) is given by (3), p.47 of
(BMOT2].
qu(0) = J,(0)/a. (39)
For this case the general solution reduces to
(5,0 = [ 3 003, 6% + AL - empl-te® + Do, ©0)
o

an integral solution obtained by Thomasl. In this form the above °
integral cannot be reduced further. For steady state the integral

reduces t
T(r,=) = I Jo(or)Jl(o) (a2 + ez)'lda. (41)
o

For r > 1 this integral is given by (12), p.49 of [EMOT2], namely,

14



T(r,») = e'lll(e)Ko(er), r > 1. (42)

For r < 1 we delete the transient term in the original partial

differential equation and obtain

13, 3T, .2 _
r ar(r-a?) €T+ 1=0. (43)

The homogeneous equation is one of the standard Bessel types which has
solutions Io(cr) and Ko(er). We can eliminate Ko(er), since we expect a
finite temperature at r = 0. The nonhomogeneous equation thus has a

solution

T(r,=) = 6-2 + CL_(er), r < 1. (44)

We determine the constant C by forcing the solution to be continuous at

r = 1, that is, equating (42) and (44) at r =1l. We obtain

¢ =l (oK (0 - €1 (o017 (45)
By employing the Wronskian
I,(OK (&) +I_(K, (&) = ¢ (46)
we have
c=-¢'k (0. (47)
This yields
T(r,®) = 6'2 S e'lxl(e)lo(cr) (48)

The steady state solution for a disk source with cooling is thus

given by

€-2[1 - eKl(c)Io(er)], r sl
T(r,=) = (49)

-1
€ Il(e)Ko(er), r > 1.

For the general case (40) can be approximated by an integral over

finite limits. Let

U
T(r,t) = 'f 3,003, @@ + )71 - expl-t@® + D} ldo + B (50)
o}

15



We will now determine a U such that B is bounded by some a priori
*
acceptable error. First we determine a bound for Jo(z) and Jl(z). From

Watsona, p.74

3@ =30 @ + 1P @1, (s1)

and Watson p. 168

Hél)(z) - 2/n2)2e 10/ T f e "B 4 3iu/z)" Ray,

0o

8D @) = et ooy (et W Ea - "B, 52

o

where 6 = 2 - n7/2 - w/4, and 2n is not an odd positive integer. Since

1 - 1u/22' = ll + iu/Zzl = [1+ (u/22)2]é, (53)
then

lJn(z)|s (Z/ﬂz)é[IKn+§)]-IJ:;-u[u[l + (u/2z)zj§]n-§du. (54)

For n = 0, we have

IJO(z)l < (Z/ﬂz)%[IYﬁ)]-IJ u.ée-u[l + (u/Zz)z]-%au
(o]

< (Z/ﬂz)é[rti)]'lj WEle Yy = 2/mnyd, (55)
(o]

For n = 1, where we assume z 2= %, we obtain

|9,(2)] = (Z/nz)é[IYE)]-II o211+ (u/22)27% e
o

= (2/1rz)é[1'(%)]-1_[ fo? + u*)%e Vau
(o]

The bounds derived here are generalized and the derivation is put

forth in more detail in a forthcoming report by the authors.

16



< (Z/W)i’[n%)]‘l[ JIZ%e-udu + J‘(:Z%ue-udu]
(o]

< 21'(1 + e-l)ﬂ-l(z)-%. (56)
Now in (50)

|B| < I |J°(or)| |J1(c)| @ + ez)'lda. (57)
U

1f we apply the bounds (55) and (56) to (57), this yields (assuming
r >0)

|E] < Anrﬂ' [o(az + cz)]'lda, (58)
U
where
A =251+ e byt (59)
and
B = (2/,,){ (60)
This implies that
g < 2a8r e 2iar@w? + Au 2y (61)

If we solve for U, we obtain the limit of integration, that is,

U = ([exp{ZrétlelA-IB-l} - 1]-5, (62)
where B 1is the error. For the case when r = 0, we use the fact

JO(O) = 1. Hence

®
|B| < AI o o240
U

< gAu'%, (63)

or
=1 %
U= (BAIB| D°. (64)

II1. SOURCES SYMMETRICAL ABOUT A LINE
The partial differential equation, initial and boundary conditions
governing this case in dimensionless form are
x_ ¥ 2
= —~> - €¢T+q(x), x>0, t >0 (65)

3t sz

17



T=20, xzo,t=0 (66)

aT

=0, x-O,t>0 (6;)
aT

I P by 0’ x-.m’ t 20. (68)

Condition (67) arises from the assumption that the heat source is

symmetrical about the line x = 0, that is,

q(x) = q(-x). (69)

Again we employ the integral transform method for obtaining a solution.

We define the Fourier cosine transform of an arbitrary function u(x) as

i) (2/")§j u(x) cos (9x)dx, (70)
[o}

and its inverse transform by
%m
u(x) = (2/n J uc(o)cos(ax)do. (71)
0

Bmploying the identity

o 2
(2/mE] Seos (amydx = 0% () - (2/mPRL (72)

03x x=0

and taking the Fourier cosine transform of (65), we obtain the subsidiary

equation

dT (9, t) 2 2 - -
—— = (0" + T _(0,0) + q_(0), (73)

which is subject to

'fc(o’O) = 0' (74)

As before the solution is
- - 2 2.-1 2 2
T (0,t) = qc(o)[o + €] [1 - exp{-t(@ + €)}]. (75)

Taking the inverse Fourier cosine transform, we obtain
(e -]

T(r,t) -(Z/n)éj 3, @[0% + €171 - expl-t(e? + ) Icos(xa)do.  (76)
o

This solution is valid for all sources symmetrical about the line x = 0,

for which a Fourier cosiue transform exists and for which (69) holds.

18



A. Uniform Strip Source

A uniform strip source is defined by
Qo’ x <8
0, x > 8.

Q(xaﬁ) "{ (77)

In dimensionless form this equation becomes

1, x <1
q(x) = (78)

0, x >1.

The Fourier cosine transform of (78) is
ic(o) = (2/q§éa'1sin(o). (79)

Inserting (79) into (76), we obtain the integral solution obtained by

Thomas1

T(x,t) = (2/n)] a-lsin(c)[o2 + ez]'l[l - exp{-t(a2 + 52)}]x
o

x cos (xo)do. (80)
Let
T(,t) = T,(x) - T,(x,t), (81)
where
T, (x) = (zln)j o Lein(@)[0? + €21 Lcos (xo)da (82)
(o]
and
-ezt ® -1 2 2.-1 -to2
1,000 = @2/me [ o lsin@) [0 + €17l ™ cos(xorao. (83)

o
From (4), p.l19, of [EMOT1]

6-2[1 - e-ecosh(ex)], 0 sx <1
T, (x) =

-9 - (84)
€ 2e ‘xsinh(e), l <x.
In evaluating (83), we first consider the related integral
2 2
wix,t) = (2/me”€ tj 0 1[02 + ez] 1e to sin(xo)do (85)
o
2 @ 2
= @/me e “I 07! - 0(0® + €)1t sin(xo)do.  (86)
o

19



By employing (21), p.73 and (26), p.74 of [EMOT1], we obtain

2
w(x,t) = c-ze-te erf(ixt.é) +

%t.z[eexerfc((tt + &xt-t) - e.ex'erfc(cté - ixt.ﬁ)]. (87)

It can be shown that

Tz(x,t) = 3w(l+x,t) + w(l-x,t)]. (88)
If we collect these results, the solution for a uniform strip source is
given by
T(x,t) = Tl(x) - Tz(x’t)s (89)
where
-2 -€
€ [l -e “cosh(ex)], 0 sx <1
T,(x) = _, _ (90)
L € 2e €xsinh(e), 1l <x
and
2
Tz(x,t) = %E-z{e-t€ erf{%(1+x)t-%} - erf{%(l-x)t-%}J + (91)
%[ee(ux)erfc&té + %(1+x)t-%} - e-€(1+x)erfc{ett - %(1+x)t-%}+
ee(l-x)erfc{Et% + %(l-x)t'%} - e-E(lnx)erfc{et% - %(l-x)t-%}]}.
B. GAUSSIAN STRIP SOURCE
We define a ''Gaussian strip source' by
-x2/8
Q(xsﬂ) = Qoe . (92)
In dimensionless form this source is given by
-xz
q(x) = e (93)
and its Fourier cosine transform, which is obtained from (1l1),
p. 15 of [EMOTL] is
2
- -2 -0 /4
q (0) =2 B0, (94)

20



The solution for a strip source is thus

® 2
T(x,t) = ﬂ-%J e'%p [02 + €2]-1[1 - exp{-t(c2 + 62)}]cos(ox)dc. (95)
o

Employing (15), p. 15 of [EMOT1l] we obtain

2
T(x,t) = %e-ln%eée {e-ex[erfc(tt-x) -

erfc{§€(4t+1)% - x(4t+l).%}] +
e Xlerfc(Betx) - erfc{§€(4t+l)% + x(4t+1).%}]}. (96)

Note that in the solutions for sources symmetrical about a line, the
domain of interest, -» < X < », has been restricted to 0 < x < » for
mathematical simplicity. This causes no loss of generality, since the
solutions obtained can be extended to negative x simply by employing

the symmetry condition T(-x) = T(x), x = 0.

1V. GRAPHICAL RESULTS

Figure 2 is a graphical presentation of the dimensionless
temperature rise at the center of the heated uniform strip divided by
the dimensionless time as a function of the dimensionless group B(ar).%.
By use of the dimensionless variables defined in the List of Symbols
the effect on the temperature rise above ambient, (6-60), can be
determined as a function of any of the variables k, &, h, Qo, s Te

Figure 3 is a graph of the same quantities as Figure 2 for no
surface cooling and is a comparson of the transient temperature rise

above ambient at the source center for the sources listed.
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Fig. 2. Effect of strip width, heating time, and heat transfer coefficient

on maximum temperature of thin plate heated by a uniform strip source.
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Fig. 3. Effect of source size, source type, and heating time on

N
/ I Uniformn Strip Source
2 II Gaussian Strin  Source
I Uniform Disk Source
IV Gaussion Circular Source
0
0 | 3.0 4.0

maximum temperature of thin plate with no cooling (€=0).

5.0



la

REFERENCES

P. H. Thomas. Some Conduction Problems in the Heating of Small
Areas on Large Solids. Quart. J. Mech, Appl. Math., Vol. 10,
(1957) pp. 482-493.

H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids.
Oxford University Press, London (1959).

A. Brdelyi, W. Magnus, F. Oberhetiinger and F. G. Tricomi. Tables
of Integral Transforms, Vol. 1 and 2. McGraw-Hill Book Co. Inc.
New York (1954).

G. N. Watson. A Treatise on the Theory of Bessel Functions, 2nd ed.
Cambridge University Press, London, (1948).

24



Unclacsified
Security Classification

DOCUMENT CONTROL DATA-R&D

(Security clessilication of title, body of abstract and indexing annotation must be entered when the overall report le claselfied)

1. ORIGINATING ACTIVITY (Corporate suthor) 38, REPORT SECURITY CLASSIFICATION
U.S.Army Aberdeen Research and Development Center Unclassified

Ballistic Research Laboratories 2b. GROUP

hberdeen Proving Ground, Maryland

3. REPORT TITLE

TRANSIENT HEATING OF THIN PLATES

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

S. AUTHOR(S) (Firef name, middie initial, lael name)

Harold J. Breaux
Palmer R. Schlegel

¢ REPORT DATE 78. TOTAL NO. OF PAGRS 76. NO. OF REFS
February 1970 29 L
8. CONTRACT OR GRANT NO. 824. ORIGINATOR'S REPOPT NUMBER(S)
. smosEcT NO.  RDTLE 1TO61102A1LR BRL Report No. 1471
e, ob. :"I’.NIR n}'oar NO{S) (Any other numbere thet cis) be essigned
d.

10. DISTRIBUTION STATEMENT
This document has been approved for public release and sale; its distribution
is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

U.S. Army Materiel Command
wWashington, D.C. '

13. ABSTRACY
Two classes of heating problems involving the heating of thin plates over a portion

of their surface are considered. Such problems have numerous applications, one such
application being the determination of the temperature rise in materials upon which a
laser beam is directed. The heating effects caused by & laser beam fits into the class
of problems for which the heating source has circular symmetry. The second class of
problems arises when the source term has symmetry about a line on the surface.
Solutions in the form of a definite integral are obtained for both classes of

problems for a general time independent source of unspecified spatial distribution.
Several solutions in closed form are obtained for particular source functions and for
particular values of the various parameters of the problem. For the case of a disk
source an error bound useful in the numerical quadrature of the integral solution is
obtained.

DD 2%, 1473 556080 030 amy V! 140 oo mucw e T

ty cation




Unclassified

§ocurity Classification

LINK A LINK B LINK C
KEY WORDS

ROLE wT ROLE wy rRoLe wy
Heating
Lasers
Temperature
Thin Plates
Conduction Heat Transfer
Parabolic Partial Differential Equations

Unclassified

Secwrity Classificstion



